Toxicity and SidJ-Mediated Suppression of Toxicity Require Distinct Regions in the SidE Family of Legionella pneumophila Effectors.
نویسندگان
چکیده
Intracellular bacteria use a variety of strategies to evade degradation and create a replicative niche. Legionella pneumophila is an intravacuolar pathogen that establishes a replicative niche through the secretion of more than 300 effector proteins. The function of most effectors remains to be determined. Toxicity in yeast has been used to identify functional domains and elucidate the biochemical function of effectors. A library of L. pneumophila effectors was screened using an expression plasmid that produces low levels of each protein. This screen identified the effector SdeA as a protein that confers a strong toxic phenotype that inhibits yeast replication. The toxicity of SdeA was suppressed in cells producing the effector SidJ. The effector SdeA is a member of the SidE family of L. pneumophila effector proteins. All SidE orthologs encoded by the Philadelphia isolate of Legionella pneumophila were toxic to yeast, and SidJ suppressed the toxicity of each. We identified a conserved central region in the SidE proteins that was sufficient to mediate yeast toxicity. Surprisingly, SidJ did not suppress toxicity when this central region was produced in yeast. We determined that the amino-terminal region of SidE was essential for SidJ-mediated suppression of toxicity. Thus, there is a genetic interaction that links the activity of SidJ and the amino-terminal region of SidE, which is required to modulate the toxic activity displayed by the central region of the SidE protein. This suggests a complex mechanism by which the L. pneumophila effector SidJ modulates the function of the SidE proteins after translocation into host cells.
منابع مشابه
Spatiotemporal Regulation of a Legionella pneumophila T4SS Substrate by the Metaeffector SidJ
Modulation of host cell function is vital for intracellular pathogens to survive and replicate within host cells. Most commonly, these pathogens utilize specialized secretion systems to inject substrates (also called effector proteins) that function as toxins within host cells. Since it would be detrimental for an intracellular pathogen to immediately kill its host cell, it is essential that se...
متن کاملIntragenic Recombination Has a Critical Role on the Evolution of Legionella pneumophila Virulence-Related Effector sidJ
SidJ is a Dot/Icm effector involved in the trafficking or retention of ER-derived vesicles to Legionella pneumophila vacuoles whose mutation causes an observable growth defect, both in macrophage and amoeba hosts. Given the crucial role of this effector in L. pneumophila virulence we investigated the mechanisms shaping its molecular evolution. The alignment of SidJ sequences revealed several al...
متن کاملCytotoxicity of extracellular Legionella pneumophila.
Legionella pneumophila, the causative agent of Legionnaire's disease and Pontiac fever, is known to produce a cytopathic effect on macrophages. The capacity of extracellular L. pneumophila to mediate toxicity for guinea pig peritoneal macrophages and J774 mouse macrophages was assessed. Extracellular organisms were found to be capable of mediating toxicity; however, toxic activity appeared to r...
متن کاملInvestigation of Legionella Pneumophila bacteria in hospital water supply systems
Introduction: Legionella Pneumophila bacteria is known as one of the most important nosocomial infections and the most common cause of death in patients. This study was aimed to identify Legionella Pneumophila bacteria in hospital water supply systems. Material and Methods: This descriptive cross-sectional study was performed to identify Legionella pneumophila in hot and cold-water systems of i...
متن کاملMolecular characterization of the Dot/Icm-translocated AnkH and AnkJ eukaryotic-like effectors of Legionella pneumophila.
Although most Dot/Icm-translocated effectors of Legionella pneumophila are not required for intracellular proliferation, the eukaryotic-like ankyrin effectors, AnkH and AnkJ are required for intracellular proliferation. In this report, we show that the IcmSW chaperones are essential for translocation of AnkJ but not AnkH. The 10 C-terminal residues and the ANK domains of AnkH and AnkJ are requi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Infection and immunity
دوره 83 9 شماره
صفحات -
تاریخ انتشار 2015